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Introduction

• Improvements in spectral resolution of hyperspectral images (HSIs)

requires advances in signal processing and exploitation algorithms,

opening the doors to new application domains.

• HSI images are typically characterized by:

 high dimensionality of the pixels;

 high spectral redundancy;

 heterogeneities at subpixel level;

 impact of atmospheric and geometric distortions;

 spatial variability of the spectral signature;

 nonlinear feature relations.

• All of these factors, together with few labeled samples typically available, make HSI image processing a

complex problem. Moreover, high computational time is required for the analysis of large images (Big

Data challenge).

Picture from http://www.evolved-analytics.com/?q=technology/courses/featureselection
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System Architecture of HSI Image Processing
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Feature Extraction for HSI images

• The high dimensionality of HSI images, as well as the high

redundancy among spectral bands, can compromise the

classification/estimation resutls.

• Feature extraction methods allow the identification of the

most discriminative variables for data classification,

regression, clustering, ranking, compression, or data

visualization.

• In many situations, nonlinear feature extraction is

necessary to obtain an acceptable performance. This is a

very complex problem when few labeled data points are

available.

[1] Izquierdo-Verdiguier, E., Gomez-Chova, L., Bruzzone, L., & Camps-Valls, G. . "Semisupervised kernel feature extraction 

for remote sensing image analysis." IEEE transactions on geoscience and remote sensing 52.9 (2014). 5567-5578.

Projections extracted by different feature extraction methods. 

The OA obtained on the test set is provided.
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Feature Selection for HSI images
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• The high dimensionality of the feature space with respect to the typical small amount of labeled training

samples represents one of the main challenge of the automatic processing of HSI images.

• Feature selection methods select a subset of original features more informative for the desired

application. In this context, we developed feature selection methods to:

 select the most informative spectral channels for image classification [2];

 select the most significant filter parameters to extract spatial information from the scene [3];

 detect the set of features that minimize the distributions distance between different HSI images

for domain adaptation [4].
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Example – Feature Selection for Classification

Thematic Map

Study Area: Bosco Fontana (Mantova, Italy)

 Extension: 233 ha;

 23 forest species.

HSI data:

 Six partially overlapping images;

 Acquisition date: 28th June 2006;

 Sensor: AISA Eagle;

 Spectral Channels: 126;

 Spectral Range: 400-990 nm;

 Spectral Resolution: 4.6 nm;

 Spatial Resolution: 1 m;

 Flight Height: 750 m.

False Color HSI image

[5] Dalponte, M., Bruzzone, L., Vescovo, L., & Gianelle, D. "The role of spectral resolution and classifier complexity in 

the analysis of hyperspectral images of forest areas." Remote Sensing of Environment 113.11 (2009): 2345-2355.

Kappa Accuracy: 87.90%
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Alnus glutinose

Acer negundo
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Carpinus betulus

Snags

Fraxinus an.
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Shadows
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Populus hybrid
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Quercus cerris
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Ulmus minor
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Example – Feature Selection for Classification

Overall Accuracy 93.85%

Time 57 s

Overall Accuracy 96.96%

Time 18 s

True Color HSI image

Trees

Gravel

Meadows

Asphalt

Metal sheets

bricks

Bitumen

Shadows

Bare Soil

[3] Pedergnana, M., Marpu, P. R., Dalla Mura, M., Benediktsson, J. A., & Bruzzone, L. "A novel technique for optimal feature selection in 

attribute profiles based on genetic algorithms." IEEE Transactions on Geoscience and Remote Sensing 51.6 (2013). 3514-3528.

[3]Reference Method
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Study Area: Venice Lagoon (Venice, Italy)

 Six classes;

HSI data:

 Sensor: ROSIS;

 Spectral Channels: 115;

 Spectral Range: 400-990 nm;

 Spatial Resolution: 1 m;
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Example – Classification over the Venice Lagoon 

[6] Bovolo, Francesca, Lorenzo Bruzzone, and Lorenzo Carlin. "A novel technique for subpixel image classification based on support vector machine." IEEE 

Transactions on Image Processing 19.11 (2010): 2983-2999.

Spartina Maritima

Liboneum Narbonese

Juncus Maritimus

Sarcocornia Fruticosa

Bare Soil

Water

Overall Accuracy: 89.37%

Thematic Map False Color HSI image
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Regression for Biophysical Variable Estimation

[7] Camps-Valls, G., Bruzzone, L., Rojo-Álvarez, J. L., & Melgani, F. (2006). Robust support vector regression for biophysical variable estimation from remotely 

sensed images. IEEE Geoscience and Remote Sensing Letters, 3(3), 339-343.

[8] Demir, Begüm, and Lorenzo Bruzzone. "A multiple criteria active learning method for support vector regression." Pattern recognition 47.7 (2014): 2558-2567.

• The estimation of biophysical parameters is of special relevance in order to understand better the 

environment dynamics at local and global scales. 

• To accurately estimate the biophysical parameters, sophisticated methods are needed to capture the 

relationships between remote sensing measurements and the investigated parameters. 

• In this framework, we developed advanced regression methods in order to:

 define specific cost functions that can handle the different types of noise [7];

 address regression problems with small size initial training data [8].
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Fusion of HSI images and other RS data
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Fusion of HSI images and other RS data
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Conclusion

• An overview of some of the methods and applications for the automatic analysis of the 

HSI images developed by the Rslab team (University of Trento) has been presented.

• The presented system architecture for HSI image processing is based on:

 Feature Extraction for HSI images;

 Feature Selection for HSI images;

 Classification of HSI images;

 Regression of Biophysical Parameters with HSI images.

• An example of integration of HSI images with other RS data has been presented.

• The proposed system architecture can be applied in different application domains and is 

promising for PRISMA HSI images processing.
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Thank you for the attention!


